3.3.30 \(\int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [230]

3.3.30.1 Optimal result
3.3.30.2 Mathematica [C] (verified)
3.3.30.3 Rubi [A] (verified)
3.3.30.4 Maple [B] (verified)
3.3.30.5 Fricas [B] (verification not implemented)
3.3.30.6 Sympy [F]
3.3.30.7 Maxima [F]
3.3.30.8 Giac [B] (verification not implemented)
3.3.30.9 Mupad [F(-1)]

3.3.30.1 Optimal result

Integrand size = 17, antiderivative size = 88 \[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {(a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{2 b^{3/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b} \]

output
1/2*(a-2*b)*arctanh(b^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/b^(3/2)+arctanh 
((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(1/2)-1/2*(a+b*tanh(x)^2 
)^(1/2)*tanh(x)/b
 
3.3.30.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 5.08 (sec) , antiderivative size = 208, normalized size of antiderivative = 2.36 \[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\left (\sqrt {2} a (a+b) \sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}}}{\sqrt {2}}\right ),1\right )-2 \sqrt {2} a b \sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}} \operatorname {EllipticPi}\left (\frac {b}{a+b},\arcsin \left (\frac {\sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}}}{\sqrt {2}}\right ),1\right )-(a+b) (a-b+(a+b) \cosh (2 x)) \text {sech}^2(x)\right ) \tanh (x)}{2 \sqrt {2} b (a+b) \sqrt {(a-b+(a+b) \cosh (2 x)) \text {sech}^2(x)}} \]

input
Integrate[Tanh[x]^4/Sqrt[a + b*Tanh[x]^2],x]
 
output
((Sqrt[2]*a*(a + b)*Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]*Ellipt 
icF[ArcSin[Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]/Sqrt[2]], 1] - 
2*Sqrt[2]*a*b*Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]*EllipticPi[b 
/(a + b), ArcSin[Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]/Sqrt[2]], 
 1] - (a + b)*(a - b + (a + b)*Cosh[2*x])*Sech[x]^2)*Tanh[x])/(2*Sqrt[2]*b 
*(a + b)*Sqrt[(a - b + (a + b)*Cosh[2*x])*Sech[x]^2])
 
3.3.30.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3042, 4153, 381, 398, 224, 219, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (i x)^4}{\sqrt {a-b \tan (i x)^2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \int \frac {\tanh ^4(x)}{\left (1-\tanh ^2(x)\right ) \sqrt {a+b \tanh ^2(x)}}d\tanh (x)\)

\(\Big \downarrow \) 381

\(\displaystyle \frac {\int \frac {a-(a-2 b) \tanh ^2(x)}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {(a-2 b) \int \frac {1}{\sqrt {b \tanh ^2(x)+a}}d\tanh (x)+2 b \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {2 b \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)+(a-2 b) \int \frac {1}{1-\frac {b \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 b \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)+\frac {(a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {2 b \int \frac {1}{1-\frac {(a+b) \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}+\frac {(a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {(a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}+\frac {2 b \text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}}{2 b}-\frac {\tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\)

input
Int[Tanh[x]^4/Sqrt[a + b*Tanh[x]^2],x]
 
output
(((a - 2*b)*ArcTanh[(Sqrt[b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/Sqrt[b] + (2 
*b*ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/Sqrt[a + b])/(2*b 
) - (Tanh[x]*Sqrt[a + b*Tanh[x]^2])/(2*b)
 

3.3.30.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 381
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
+ 1)/(b*d*(m + 2*(p + q) + 1))), x] - Simp[e^4/(b*d*(m + 2*(p + q) + 1)) 
Int[(e*x)^(m - 4)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*c*(m - 3) + (a*d*(m + 
2*q - 1) + b*c*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q 
}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 3] && IntBinomialQ[a, b, c, d, e, m, 2 
, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.30.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(177\) vs. \(2(70)=140\).

Time = 0.11 (sec) , antiderivative size = 178, normalized size of antiderivative = 2.02

method result size
derivativedivides \(-\frac {\ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{\sqrt {b}}-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}\, \tanh \left (x \right )}{2 b}+\frac {a \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{2 b^{\frac {3}{2}}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}\) \(178\)
default \(-\frac {\ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{\sqrt {b}}-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}\, \tanh \left (x \right )}{2 b}+\frac {a \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{2 b^{\frac {3}{2}}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}\) \(178\)

input
int(tanh(x)^4/(a+b*tanh(x)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-ln(b^(1/2)*tanh(x)+(a+b*tanh(x)^2)^(1/2))/b^(1/2)-1/2*(a+b*tanh(x)^2)^(1/ 
2)*tanh(x)/b+1/2*a/b^(3/2)*ln(b^(1/2)*tanh(x)+(a+b*tanh(x)^2)^(1/2))-1/2/( 
a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b* 
(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))+1/2/(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh 
(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x) 
-1))
 
3.3.30.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1027 vs. \(2 (70) = 140\).

Time = 0.48 (sec) , antiderivative size = 5494, normalized size of antiderivative = 62.43 \[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)^4/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")
 
output
Too large to include
 
3.3.30.6 Sympy [F]

\[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {\tanh ^{4}{\left (x \right )}}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \]

input
integrate(tanh(x)**4/(a+b*tanh(x)**2)**(1/2),x)
 
output
Integral(tanh(x)**4/sqrt(a + b*tanh(x)**2), x)
 
3.3.30.7 Maxima [F]

\[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int { \frac {\tanh \left (x\right )^{4}}{\sqrt {b \tanh \left (x\right )^{2} + a}} \,d x } \]

input
integrate(tanh(x)^4/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(tanh(x)^4/sqrt(b*tanh(x)^2 + a), x)
 
3.3.30.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 559 vs. \(2 (70) = 140\).

Time = 0.57 (sec) , antiderivative size = 559, normalized size of antiderivative = 6.35 \[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {{\left (a - 2 \, b\right )} \arctan \left (-\frac {\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-b}}\right )}{\sqrt {-b} b} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {2 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} {\left (a + 2 \, b\right )} + {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} {\left (3 \, a - 2 \, b\right )} \sqrt {a + b} + {\left (3 \, a^{2} - 3 \, a b - 2 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} + {\left (a^{2} - a b + 2 \, b^{2}\right )} \sqrt {a + b}\right )}}{{\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{2} b} \]

input
integrate(tanh(x)^4/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")
 
output
(a - 2*b)*arctan(-1/2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 
2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))/sqrt(-b))/(sqrt(-b)*b) - 
 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2 
*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 
1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x 
) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a 
 + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a 
 + b) - sqrt(a + b)))/sqrt(a + b) - 2*((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4* 
x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3*(a + 2*b) + (sqrt(a 
 + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a 
 + b))^2*(3*a - 2*b)*sqrt(a + b) + (3*a^2 - 3*a*b - 2*b^2)*(sqrt(a + b)*e^ 
(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b)) + 
 (a^2 - a*b + 2*b^2)*sqrt(a + b))/(((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) 
+ b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(sqrt(a + b)*e^(2* 
x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt 
(a + b) + a - 3*b)^2*b)
 
3.3.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh ^4(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {{\mathrm {tanh}\left (x\right )}^4}{\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}} \,d x \]

input
int(tanh(x)^4/(a + b*tanh(x)^2)^(1/2),x)
 
output
int(tanh(x)^4/(a + b*tanh(x)^2)^(1/2), x)